Features of Thiolated Ligands Promoting Resistance to Ligand Exchange in Self-Assembled Monolayers on Gold Nanoparticles

Author:

Chen Xinyue,Qoutah Wafaa W.,Free Paul,Hobley Jonathan,Fernig David G.,Paramelle David

Abstract

An important feature necessary for biological stability of gold nanoparticles is resistance to ligand exchange. Here, we design and synthesize self-assembled monolayers of mixtures of small ligands on gold nanoparticles promoting high resistance to ligand exchange. We use as ligands short thiolated peptidols, e.g. H-CVVVT-ol, and ethylene glycol terminated alkane thiols (HS-C11-EG4). We present a straightforward method to evaluate the relative stability of each ligand shell against ligand exchange with small thiolated molecules. The results show that a ligand with a ‘thin’ stem, such as HS-C11-EG4, is an important feature to build a highly packed self-assembled monolayer and provide high resistance to ligand exchange. The greatest resistance to ligand exchange was found for the mixed ligand shells of the pentapeptidols H-CAVLT-ol or H-CAVYT-ol and the ligand HS-C11-EG4 at 30:70 (mole/mole). Mixtures of ligands of very different diameters, such as the peptidol H-CFFFY-ol and the ligand HS-C11-EG4, provide only a slightly lower stability against ligand exchange. These ligand shells are thus likely to be suitable for long-term use in biological environments. The method developed here provides a rapid screening tool to identify nanoparticles likely to be suitable for use in biological and biomedical applications.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3