Legacy sources of mercury in an urbanised watershed

Author:

Clark Heather F.,Benoit Gaboury

Abstract

Environmental context. Mercury is a neurotoxin that bioaccumulates and is associated with global contamination and often with regional atmospheric sources. However, in Connecticut, USA, in watersheds characterised by a gradient of forested to urban land uses we found that the predominant source of elevated Hg is local. This study uses a novel nested sampling method to pinpoint hot spots of mercury and presents inorganic mercury concentrations in water, sediment, soil, and aquatic organisms. The results indicate that mercury contamination is an environmental legacy associated with the silver plating industry and that local sources are critical to the biogeochemical mercury cycle here. Abstract. Mercury levels were measured in various environmental compartments of the Quinnipiac River system (CT, USA). In streams, dissolved mercury reached a maximum of 6.3 ng L–1 during baseflow and 30 ng L–1 during stormflow, whereas surficial impoundment sediments had a maximum mercury concentration of 420 μg kg–1. A sediment core collected from the Quinnipiac River indicates that peak loading of mercury occurred before 1940. Wharton Brook tributary of the Quinnipiac River represents 30% of the mercury loading to the river and the likely source of mercury to the sediment is a past silver manufacturing plant. Analysis of soil samples from the riparian zone of Wharton Brook, a tributary of concern because it empties into a popular fishing location, revealed mercury concentrations as high as 20 000 μg kg–1. It appears that the soil surrounding the former factory is acting as the current source of mercury to the water column and aquatic communities. Removal of contaminated soil will probably be necessary to reduce mercury levels and the threat to humans in downstream environments.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3