Factors influencing fractures networks within Permian shale intervals in the Cooper Basin, South Australia

Author:

Abul Khair Hani,Backé Guillaume,King Rosalind,Holford Simon,Tingay Mark,Cooke Dennis,Hand Martin

Abstract

The future success of both enhanced (engineered) geothermal systems and shale gas production is reliant on the development of reservoir stimulation strategies that suit the local geo-mechanical conditions of the prospects. The orientation and nature of the in-situ stress field and pre-existing natural fracture networks in the reservoir are among the critical parameters that will control the quality of the stimulation program. This study provides a detailed investigation into the nature and origin of natural fractures in the area covered by the Moomba–Big Lake 3D seismic survey, in the southwest termination of the Nappamerri Trough of the Cooper Basin. These fractures are imaged by both borehole image logs and complex multi-traces seismic attributes (e.g. dip-steered most positive curvature and dip-steered similarity), are pervasive throughout the cube, and exhibit a relatively consistent northwest–southeast orientation. Horizon extraction of the seismic attributes reveal a strong variation in the spatial distribution of the fractures. In the acreage of interest, fracture density is at its highest in the vicinity of faults and on top of tight antiforms. This study also suggests a good correlation between high fracture density and high gamma ray values. The correlation between high fracture density and shale content is somewhat counterintuitive, as shale is expected to have a higher tensile and compressive strengths at shallow depths and typically contain fewer fractures (Lin, 1983). At large depths, however—and due to sandstone diagenesis and cementation—shale has lower tensile and compressive strength than sandstone and is expected to be more fractured (Lin, 1983). A similar correlation has been noted in other Australian Basins (e.g. Northern Perth Basin). Diagenetic effects, pore pressure, stiffness, variations in tensile versus compressive strength of the shale and the sandstone may explain this disparity.

Publisher

CSIRO Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3