Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants

Author:

Nolan J. V.,Godwin I. R.,de Raphélis-Soissan V.,Hegarty R. S.

Abstract

Inclusion of nitrate (NO3−) in ruminant diets is a means of increasing non-protein nitrogen intake while at the same time reducing emissions of enteric methane (CH4) and, in Australia, gaining carbon credits. Rumen microorganisms contain intracellular enzymes that use hydrogen (H2) released during fermentation to reduce NO3− to nitrite (NO2−), and then reduce the resulting NO2− to ammonia or gaseous intermediates such as nitrous oxide (N2O) and nitric oxide (NO). This diversion of H2 reduces CH4 formation in the rumen. If NO2− accumulates in the rumen, it may inhibit growth of methanogens and other microorganisms and this may further reduce CH4 production, but also lower feed digestibility. If NO2− is absorbed and enters red blood cells, methaemoglobin is formed and this lowers the oxygen-carrying capacity of the blood. Nitric oxide produced from absorbed NO2− reduces blood pressure, which, together with the effects of methaemoglobin, can, at times, lead to extreme hypoxia and death. Nitric oxide, which can be formed in the gut as well as in tissues, has a variety of physiological effects, e.g. it reduces primary rumen contractions and slows passage of digesta, potentially limiting feed intake. It is important to find management strategies that minimise the accumulation of NO2−; these include slowing the rate of presentation of NO3– to rumen microbes or increasing the rate of removal of NO2−, or both. The rate of reduction of NO3− to NO2− depends on the level of NO3− in feed and its ingestion rate, which is related to the animal’s feeding behaviour. After NO3− is ingested, its peak concentration in the rumen depends on its rate of solubilisation. Once in solution, NO3− is imported by bacteria and protozoa and quickly reduced to NO2−. One management option is to encapsulate the NO3− supplement to lower its solubility. Acclimating animals to NO3− is an established management strategy that appears to limit NO2− accumulation in the rumen by increasing microbial nitrite reductase activity more than nitrate reductase activity; however, it does not guarantee complete protection from NO2− poisoning. Adding concentrates into nitrate-containing diets also helps reduce the risk of poisoning and inclusion of microbial cultures with enhanced NO2−-reducing properties is another potential management option. A further possibility is to inhibit NO2− absorption. Animals differ in their tolerance to NO3− supplementation, so there may be opportunities for breeding animals more tolerant of dietary NO3−. Our review aims to integrate current knowledge of microbial processes responsible for accumulation of NO2− in rumen fluid and to identify management options that could minimise the risks of NO2− poisoning while reducing methane emissions and maintaining or enhancing livestock production.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3