Author:
Nolan J. V.,Godwin I. R.,de Raphélis-Soissan V.,Hegarty R. S.
Abstract
Inclusion of nitrate (NO3−) in ruminant diets is a means of increasing non-protein nitrogen intake while at the same time reducing emissions of enteric methane (CH4) and, in Australia, gaining carbon credits. Rumen microorganisms contain intracellular enzymes that use hydrogen (H2) released during fermentation to reduce NO3− to nitrite (NO2−), and then reduce the resulting NO2− to ammonia or gaseous intermediates such as nitrous oxide (N2O) and nitric oxide (NO). This diversion of H2 reduces CH4 formation in the rumen. If NO2− accumulates in the rumen, it may inhibit growth of methanogens and other microorganisms and this may further reduce CH4 production, but also lower feed digestibility. If NO2− is absorbed and enters red blood cells, methaemoglobin is formed and this lowers the oxygen-carrying capacity of the blood. Nitric oxide produced from absorbed NO2− reduces blood pressure, which, together with the effects of methaemoglobin, can, at times, lead to extreme hypoxia and death. Nitric oxide, which can be formed in the gut as well as in tissues, has a variety of physiological effects, e.g. it reduces primary rumen contractions and slows passage of digesta, potentially limiting feed intake. It is important to find management strategies that minimise the accumulation of NO2−; these include slowing the rate of presentation of NO3– to rumen microbes or increasing the rate of removal of NO2−, or both. The rate of reduction of NO3− to NO2− depends on the level of NO3− in feed and its ingestion rate, which is related to the animal’s feeding behaviour. After NO3− is ingested, its peak concentration in the rumen depends on its rate of solubilisation. Once in solution, NO3− is imported by bacteria and protozoa and quickly reduced to NO2−. One management option is to encapsulate the NO3− supplement to lower its solubility. Acclimating animals to NO3− is an established management strategy that appears to limit NO2− accumulation in the rumen by increasing microbial nitrite reductase activity more than nitrate reductase activity; however, it does not guarantee complete protection from NO2− poisoning. Adding concentrates into nitrate-containing diets also helps reduce the risk of poisoning and inclusion of microbial cultures with enhanced NO2−-reducing properties is another potential management option. A further possibility is to inhibit NO2− absorption. Animals differ in their tolerance to NO3− supplementation, so there may be opportunities for breeding animals more tolerant of dietary NO3−. Our review aims to integrate current knowledge of microbial processes responsible for accumulation of NO2− in rumen fluid and to identify management options that could minimise the risks of NO2− poisoning while reducing methane emissions and maintaining or enhancing livestock production.
Subject
Animal Science and Zoology,Food Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献