Photostability of the UV filter benzophenone-3 and its effect on the photodegradation of benzotriazole in water

Author:

Liu You-Sheng,Ying Guang-Guo,Shareef Ali,Kookana Rai S.

Abstract

Environmental contextThe environmental fate of a particular contaminant can be influenced by the presence of other chemicals. It is shown that the photodegradation in water of benzotriazole, a common household and industrial chemical, is reduced in the presence of a sunscreen compound. Thus, contaminants such as benzotriazole may persist longer in the environment in the presence of chemicals designed to filter ultraviolet rays, such as those used in sunscreens. AbstractThe presence of co-solutes (e.g. UV filters) can potentially influence the environmental fate of micropollutants. The photolysis of benzotriazole (BT, an anticorrosion agent) and benzophenone-3 (BP-3, a UV filter), as well as their interactions in aqueous solutions under UV and artificial solar light with or without added humic acid (HA) and metal ions (Cu2+ and Fe3+), has been investigated. BT was found to be photosensitive under UV irradiation, but photostable under solar light. The half-lives for the photolysis of BT were 2.8 h in pure aqueous solution and increasing to 4.5 h in the presence of BP-3 (1.0 mg L–1). BP-3 was photostable under both UV and artificial solar light. Solar radiation exposure of 50 days resulted in a small loss of BP-3 (8 %) in pure aqueous solution, and resulted in a greater loss of BP-3 (up to 31 %) at 50 mg L–1 of HA. UV irradiation of the BT solutions containing BP-3 led to formation of five photoproducts, formed mainly by N–N and N–NH bond scission, polymerisation and hydroxylation. In the case of BP-3, one major photoproduct was isolated and tentatively identified as 2,4-dimethylanisole, formed by the loss of hydroxy and benzoyl groups.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3