Microbial communities of upland peat swamps were no different 1 year after a hazard reduction burn

Author:

Christiansen Nicole A.ORCID,Fryirs Kirstie A.ORCID,Green Timothy J.,Hose Grant C.

Abstract

Fire in wetlands is poorly understood, yet hazard reduction burns are a common management practice and bushfires are becoming increasingly prevalent because of climate change. Fire may have long-lasting implications for the microbial component of these wetland ecosystems that regulate carbon and nutrient cycling. The extremely fire-prone Blue Mountains World Heritage Area in south-eastern Australia contains hundreds of endangered peat-forming upland swamps that regularly experience both bushfires and hazard reduction burns. In a before–after control–­impact study, we surveyed the sediment microbial community of these swamps to test the impact of a low-intensity hazard reduction burn. Along with sediment pH, moisture and organic content, we measured gene abundances including those relating to carbon cycling (quantitative PCR (qPCR) of pmoA, mcrA, bacterial 16S rRNA and archaeal 16S rRNA), and bacteria community fingerprint (terminal restriction fragment length polymorphism (T-RFLP)). One year after the hazard reduction burn, there were no significant differences in the gene abundances or microbial community fingerprint that could be attributed to the fire, suggesting that the hazard reduction burn did not have a long-term impact on these microbial communities.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3