Stem functional traits vary among co-occurring tree species and forest vulnerability to drought

Author:

Matusick GeorgeORCID,Ruthrof Katinka X.,Hardy Giles E. S. J.

Abstract

Context Stem functional traits are critical for tree hydraulic infrastructure and have important consequences for forest function, particularly concerning vulnerability to drought. Methods Three stem traits, sapwood area, heartwood area, and bark area, were measured in two co-dominant forest species, Eucalyptus marginata Donn. Ex. Sm. and Corymbia calophylla (Lindl.) K.D.Hill & L.A.S.Johnson, in forest patches with low and high vulnerabilities to drought in south-western Australia. Patches of high drought vulnerability experienced die-off during a heatwave and drought in 2011, while patches of low vulnerability were largely not affected. Key results Sapwood area was significantly higher in C. calophylla than in E. marginata, and C. calophylla maintained more sapwood per unit DBH than did E. marginata, especially in larger trees. There was a 29% smaller sapwood area in high drought-vulnerability patches than in low drought-vulnerability patches (including both species). The relationship between sapwood area and DBH varied by tree size. Small trees had a greater sapwood area in high drought-vulnerable patches, whereas larger trees had more sapwood in low drought-vulnerable patches. It is unclear whether sapwood area relationships reflect differences in leaf area or tree age. Conclusions Observed differences in sapwood between species may help explain their differential tolerance to drought, whereas differences between drought-vulnerability sites may suggest adaptation in the studied species. Implications Understanding the traits associated with drought vulnerability will increase our prediction of forest response to drying and warming. Strong relationships between stem traits and DBH, developed here, may help future efforts to model water-use in the Northern Jarrah Forest.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3