Quantifying nitrous oxide emissions from the foliage of cotton, maize and soybean crops

Author:

Rochester I.,Wood C.,Macdonald B.

Abstract

Nitrous oxide (N2O) is a potent greenhouse gas, contributing to global warming. Most of the N2O emitted from cropping systems is derived from the soil and is closely related to the use of nitrogen (N) fertiliser. However, several reports have shown that small, yet significant, portions of the N2O flux from cropping systems are emitted from the crop foliage. This research aimed to quantify N2O emissions from the foliage of field-grown cotton (Gossypium hirsutum L.), and included maize (Zea mays L.) and soybean (Glycine max L.) for comparison. We also aimed to identify differences in the timing of N2O emissions from foliage during the day and over an irrigation cycle. Individual plants were isolated from the soil, and the atmosphere surrounding the encapsulated plants was sampled over a 30-min period. Subplots that were previously fertilised with urea at 0, 80, 160, 240 and 320 kg N ha–1 and then sown to cotton were used to measure N2O flux from plants on three occasions. N2O flux from cotton foliage was also measured on five occasions during an 11-day irrigation cycle and at five times throughout one day. N2O flux from foliage accounted for a small but significant portion (13–17%) of the soil–crop N2O flux. N2O flux from foliage varied with plant species, and the time of day the flux was measured. N2O flux from cotton plants was closely related to soil water content. Importantly, the application of N fertiliser was not related to the N2O flux from cotton plants. The most plausible explanation of our results is that a proportion of the N2O that was evolved in the soil was transported through the plant via evapotranspiration, rather than being evolved within the plant. Studies that exclude N2O emissions from crop foliage will significantly underestimate the N2O flux from the system.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3