Sensitivity of organic matter mineralisation to water availability: role of solute diffusivity and the ‘Birch effect’

Author:

Qiu WeiwenORCID,Curtin DenisORCID,Hu WeiORCID,Beare MikeORCID

Abstract

Context Several functions are used to describe the effects of soil water content on organic matter mineralisation. A meta-analysis of published studies identified relative water content (RWC; available water relative to the soil’s available water holding capacity) as the best water descriptor for N mineralisation. Aims To evaluate RWC as a predictor of C and N mineralisation in New Zealand soils; and to investigate how solute diffusivity and the ‘Birch effect’ may help to explain this relationship. Methods Three agricultural soils (0–15 cm), differing in water holding capacity were incubated (8-week; 20°C) under a range of RWCs to measure carbon (respiration) and net N mineralisation. After 4 weeks, a subset of samples from each treatment were re-wetted to field capacity for a further 4-weeks to quantify the respiration response to re-wetting. Key results For all three soils, there was a linear relationship between respiration and RWC where the C respired at the wilting point (RWC = 0) was ∼25–30% of that at field capacity (RWC = 1.0). Results from a solute diffusivity model suggested that a decrease in microbial substrate supply, owing to restricted diffusion of dissolved organic compounds, contributed to moisture-induced decline in respiration. A respiration flush was not observed when RWC was >0 at re-wetting. Nitrogen mineralisation was non-linearly related to RWC, with small decreases in RWC below 1.0 (optimum) having a greater effect on N, than C, mineralisation. Conclusions RWC may be a reliable ‘water modifier’ to describe the influence of soil moisture on respiration. Further work is recommended to verify the RWC vs net N mineralisation relationship observed in this study.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3