How does increased fire frequency affect carbon loss from fire? A case study in the northern boreal forest

Author:

Brown C. D.,Johnstone J. F.

Abstract

Fire frequency is expected to increase due to climate warming in many areas, particularly the boreal forests. An increase in fire frequency may have important effects on the global carbon cycle by decreasing the size of boreal carbon stores. Our objective was to quantify and compare the amount of carbon consumed during and the amount of carbon remaining following fire in black spruce (Picea mariana (Mill.) BSP) forests burned after long v. short intervals. We hypothesised that stands with a shortened fire return interval would have a higher carbon consumption than those experiencing a historically typical fire return interval. Using field measurements of forest canopy, soil organic horizons and adventitious roots, we reconstructed pre-fire stand conditions to estimate the biomass lost in each fire and the effects on post-fire residual carbon stores. We found evidence of a higher loss of carbon following two fire events that recurred after a short interval, resulting in a much greater total reduction in carbon relative to pre-fire or mature stand conditions. Consequently, carbon storage across disturbance intervals was dramatically reduced following short-interval burns. Recovery of these stores would require a subsequent lengthening of the fire cycle, which appears unlikely under future climate scenarios.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3