Can simple, on-ground vegetation and soil measures reliably indicate the health of rangelands? An application in Australia’s semi-arid woodlands

Author:

Ludwig John A.,Tongway David J.,Hindley Norman

Abstract

Sustainably managing grazing lands is aided by monitoring and responding to simple and reliable indicators of how well the vegetation and soils of these landscapes are functioning to capture scarce resources such as water and nutrients. Indicators are needed because direct measurement of resource capture is time consuming and costly. Our aim was to assess how simple measures of vegetation patch cover and size, and soil surface condition, would apply to patchy (run-on/run-off) semi-arid landscapes being grazed at different intensities. We used the grazing gradient design where distance from water serves as a surrogate for grazing intensity, which is a combination of herbage consumption and trampling. From 0.5 to 8.9 km distance from water, we measured vegetation and soil indicators of landscape function on 12 sites, six along a grazing gradient in a mulga (Acacia aneura) woodland and six in a gidgee (Acacia cambagei) woodland. We found the size of tree groves, at both mulga and gidgee sites, declined near water, indicating a loss in the capacity of these groves to capture mobile resources in run-off. Enhancing this capacity at sites in ‘good’ rangeland condition was the presence of a thick band of grass upslope of tree groves. The number of soil erosion features (rills) was also a reliable indicator of landscape function at both gidgee and mulga sites. Soil surface condition indices of stability, infiltration and nutrient cycling had no detectable trends with distance from water at gidgee and mulga sites, but these three indicator values were always significantly higher within groves than inter-groves, confirming the important role of maintaining healthy groves of trees and upslope bands of grass within these semi-arid rangelands.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3