Organic Cosolutes Increase the Catalytic Efficiency of Phosphoenolpyruvate Carboxylase, From Cynodon Dactylon (L.) Pers., Apparently Through Self-Association of the Enzymic Protein

Author:

Stamatakis K,Gavalas NA,Manetas Y

Abstract

Several organic cosolutes (glycerol, sorbitol, betaine, proline, polyethylene glycol, polyvinylpyrrolidone) increase, to a large extent and in a concentration-dependent manner, the apparent affinity of phosphoenolpyruvate carboxylase for phosphoenolpyruvate, whereas the maximum activity remains unaffected. In absence of cosolutes, a similar response is obtained as the concentration of the enzymic protein in the assay medium is increased. The effect of the organic additives does not depend on the osmotic potential or the viscosity of the medium and it could be best interpreted with the exclusion volume theory. It is inferred that the inclusion of an appropriate cosolute in the assay medium promotes the self-association of the enzymic protein and, therefore, mimics the intracellular situation, where the enzyme is much concentrated. In light of these results, it is suggested that the physiological relevance of past data concerning the non-saturating activity and the regulation of the enzyme in vivo should be reevaluated.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3