Absorption of gypsum solution by a potassic soil: a data set

Author:

Smiles D. E.,Smith C. J.

Abstract

Reliable experimental data required to test hydrodynamic dispersion/chemical reaction models are scarce. This paper provides such a dataset based on absorption of gypsum solution by horizontal columns of relatively dry soil with an initially high exchangeable potassium ratio. Initial and boundary conditions are well defined. Water and cation concentration profiles measured after 200 and 400 min lay on single curves when graphed in terms of distance divided by the square root of time. Cation exchange occurred close to the intake surface and calcium derived from the gypsum was confined to a narrow band well behind the notional piston front that separates the absorbed solution from that originally present. Anion exchange was negligible and the solution concentration up to the piston front approximated the anion concentration of the invading solution. The interval between the region of cation exchange and the piston front maintained the original cation adsorption ratios but at a total cation solution concentration approximating that of saturated gypsum (~25 mmolc/L). Some implications of this phenomenon are discussed. Comparison of cation exchange isotherms observed when the virgin soil absorbs effluent-like solutions and when effluent-irrigated soil absorbs saturated gypsum suggest that, operationally, these isotherms may be considered to be unaffected by hysteresis in the exchange reactions.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3