A critical review of nanohybrids: synthesis, applications and environmental implications

Author:

Aich Nirupam,Plazas-Tuttle Jaime,Lead Jamie R.,Saleh Navid B.

Abstract

Environmental context Recent developments in nanotechnology have focussed towards innovation and usage of multifunctional and superior hybrid nanomaterials. Possible exposure of these novel nanohybrids can lead to unpredicted environmental fate, transport, transformation and toxicity scenarios. Environmentally relevant emerging properties and potential environmental implications of these newer materials need to be systematically studied to prevent harmful effects towards the aquatic environment and ecology. Abstract Nanomaterial synthesis and modification for applications have progressed to a great extent in the last decades. Manipulation of the physicochemical properties of a material at the nanoscale has been extensively performed to produce materials for novel applications. Controlling the size, shape, surface functionality, etc. has been key to successful implementation of nanomaterials in multidimensional usage for electronics, optics, biomedicine, drug delivery and green fuel technology. Recently, a focus has been on the conjugation of two or more nanomaterials to achieve increased multifunctionality as well as creating opportunities for next generation materials with enhanced performance. With incremental production and potential usage of such nanohybrids come the concerns about their ecological and environmental effects, which will be dictated by their not-yet-understood physicochemical properties. While environmental implication studies concerning the single materials are yet to give an integrated mechanistic understanding and predictability of their environmental fate and transport, the importance of studying the novel nanohybrids with their multi-dimensional and complex behaviour in environmental and biological exposure systems are immense. This article critically reviews the literature of nanohybrids and identifies potential environmental uncertainties of these emerging ‘horizon materials’.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3