Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish, Cherax destructor

Author:

Baldwin J.,Gupta A.,Iglesias X.

Abstract

The allometry of anaerobic metabolism during escape behaviour was examined in the freshwater crayfish, Cherax destructor. Exercise time to exhaustion, and the total number of tail flips, increased with body mass. Concentrations of arginine phosphate and glycogen in the tail musculature of resting-state animals were independent of body mass, as was glycogen concentration following exercise to exhaustion. Lactate produced during exhaustive exercise, and intracellular pH buffering capacity, showed positive allometry. Activities of phosphorylase, phosphofructokinase and lactate dehydrogenase in the tail musculature showed positive allometry, while arginine kinase activity was independent of body mass. The positive allometry of anaerobic scope, reflected in the scaling of glycolytic enzyme activities, scales with the increased power required by larger animals to overcome drag during locomotion through water. The increased capacity for anaerobic muscle work in larger animals scales with anaerobic glycolytic capacity, while the contribution from phosphagen hydrolysis remains constant. Limits to anaerobic capacity are not set by fuel stores, but may involve inhibition of glycolytic enzymes at low pH, and the scaling of intracellular pH buffering. The positive allometry of anaerobic capacity observed for enforced exercise may not be used routinely in nature because of metabolic constraints imposed during recovery.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3