Determining the distributions of plant communities in subantarctic vegetation using species distribution models

Author:

Fitzgerald Nicholas B.ORCID,Kirkpatrick Jamie B.ORCID,Dickson Catherine R.ORCID,Williams Laura K.,Fergus Alexander J.,Whinam Jennie

Abstract

Context Mapping of vegetation is important in understanding its dynamics in relation to climate change and disturbance. We investigated using species distribution models to predict plant species assemblages in a subantarctic environment where traditional image interpretation methods of vegetation mapping are limited by image availability and ability to discriminate vegetation types. Aims We test the efficacy for mapping of modelling the range and core range of common species. We also determine the relative importance of predictor variables for each of nine species. Methods We used random forest models to predict the total range and core range (>25% projected foliage cover) of nine potentially dominant plant species and determined the contributions of predictor variables to the models for each species. Key results Widespread species with extensively overlapping ranges were spatially more partitioned with modelling based on core range than with presence or absence modelling. The core range input produced a vegetation map that better approximated observed vegetation patterns than that from presence or absence data. The most important predictor variable varied between species, with elevation, distance from coast, latitude and an across island gradient (similar to longitude) being most influential. Conclusions Species distribution models using three categories (absent, <25% cover, ≥25% cover) and topographic variables derived from a digital elevation model can be used to model the distribution of vegetation assemblages in situations where presence or absence species models cannot discriminate assemblages. Implications Readily collected point location species data could be used to investigate change over time in the spatial extent of both species and vegetation types.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3