Carbon Isotope Discrimination measured Concurrently with Gas Exchange to Investigate CO2 Diffusion in Leaves of Higher Plants

Author:

Evans JR,Sharkey TD,Berry JA,Farquhar GD

Abstract

Conventional gas-exchange techniques that measure the stomatal conductance and rate of CO2 assimilation of leaves were combined with measurements of the carbon isotope composition of CO2 in air passing over a leaf. Isotopic discrimination during uptake was determined from the difference in the carbon isotope composition of air entering and leaving the leaf chamber. Isotopic discrimination measured over the short term correlated strongly with that determined from combusted leaf material. Environmental conditions were manipulated to alter the relative influences of stomatal conductance and carboxylation on the discrimination of carbon isotopes by intact leaves. With C3 plants, discrimination increased as the gradient in partial pressure of CO2 across the stomata decreased. For C4 plants there was little change in discrimination despite substantial changes in the diffusion gradient across the sto- mata. These results are consistent with, and provide the first direct experimental support for, theoretical equations describing discrimination during photosynthesis. Despite uncertainties about various processes affecting carbon isotope composition, the resistance to the transfer of CO2 from the intercellular airspaces to the sites of carboxylation in the mesophyll chloroplasts was estimated using this technique. For wheat the estimated resistance was 1.2-2.4 m2 s bar mol -1.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3