Photoresponsive Organogel Based on Supramolecular Assembly of Tris(phenylisoxazolyl)benzene

Author:

Haino Takeharu,Saito Hiroshi

Abstract

Azobenzene-substituted tris(phenylisoxazolyl)benzene 1 was developed as a photoresponsive gelator. A detailed study of the self-assembly of the trans- and cis-isomers in solution revealed that the planar trans-isomer assembled to form molecular stacks along its C 3 axis, whereas the cis-isomer did not owing to steric requirements. Based on diffusion ordered spectroscopy experiments, the size of the aggregates formed from the trans-isomer were roughly four times as large as those of the cis-isomer. The photoinduced gel-to-sol transition was achieved by irradiation with UV light at 360 nm. Solid-state morphologies of the trans- and cis-isomers were quite contrastive; the trans-isomer created fibrous supramolecular networks with a lot of voids in which solvent molecules could be immobilized, whereas the cis-isomer never created such fibrous morphologies. The trans–cis structural change of the azobenzene moieties obviously regulates the gelation ability of 1.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3