Author:
Kou Jiancun,Takahashi Shunichi,Oguchi Riichi,Fan Da-Yong,Badger Murray R.,Chow Wah Soon
Abstract
Cyclic electron flux (CEF) around PSI is essential for efficient photosynthesis and aids photoprotection, especially in stressful conditions, but the difficulty in quantifying CEF is non-trivial. The total electron flux through PSI (ETR1) and the linear electron flux (LEFO2) through both photosystems in spinach leaf discs were estimated from the photochemical yield of PSI and the gross oxygen evolution rate, respectively, in CO2-enriched air. ΔFlux = ETR1 – LEFO2 is an upper estimate of CEF. Infiltration of leaf discs with 150 μM antimycin A did not affect LEFO2, but decreased ΔFlux 10-fold. ΔFlux was practically negligible below 350 μmol photons m−2 s−1, but increased linearly above it. The following results were obtained at 980 μmol photons m−2 s−1. ΔFlux increased 3-fold as the temperature increased from 5°C to 40°C. It did not decline at high temperature, even when LEFO2 decreased. ΔFlux increased by 80% as the relative water content of leaf discs decreased from 100 to 40%, when LEFO2 decreased 2-fold. The method of using ΔFlux as a non-intrusive upper estimate of steady-state CEF in leaf tissue appears reasonable when photorespiration is suppressed.
Subject
Plant Science,Agronomy and Crop Science
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献