Using experimental trials to improve translocation protocols for a cryptic, endangered passerine

Author:

Mitchell William F.ORCID,Boulton Rebecca L.,Ireland Luke,Hunt Thomas J.,Verdon Simon J.,Olds Liberty G. M.,Hedger Chris,Clarke Rohan H.

Abstract

When key ecological information is lacking, conservation translocations should be conducted within an adaptive, experimental framework to maximise knowledge gained and to increase the probability of success. Here we investigated whether timing of release or composition of release groups influenced indices of success during a trial reintroduction of the mallee emu-wren, Stipiturus mallee, to Ngarkat Conservation Park, South Australia. We translocated cohorts of 40 and 38 birds in the Austral autumn and spring of 2018 respectively. We released individuals in small groups, comprising either familiar or unfamiliar birds, and intensively monitored all treatments for 2 weeks post-release to quantify short-term survival and dispersal. We used occupancy modelling to assess persistence of the translocated population for 2 years following releases. We also monitored source populations to assess the impact of removals. Mallee emu-wrens released in spring were more likely to remain at the release site and attempt breeding. Familiarity within a release group did not influence short-term survival. Mallee emu-wren occupancy at the release sites declined following releases and by July 2019 (12–15 months after release), we could no longer detect any emu-wrens. Density at source populations was lower 12 months after removal compared with pre-harvest levels, though these differences were not significant. Despite the failure to establish a population, we gained valuable management insights regarding both the focal species, and translocation practice more broadly. Timing of release can influence short-term indices of success. Spring releases should be considered priority actions in future mallee emu-wren translocations.

Publisher

CSIRO Publishing

Subject

Nature and Landscape Conservation,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3