Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants?

Author:

Warren Charles R.,Adams Mark A.,Chen ZuLiang

Abstract

The relationships among light-saturated photosynthesis and concentrations of nitrogen and ribulose-1,5- bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) in Australian native plants are poorly known, primarily due to the difficulty of extracting and analysing Rubisco from such species. Rubisco may be rapidly quantified in crude extracts of plant tissue by capillary electrophoresis (CE); however, the presence of phenolic compounds in many Australian native plants limits the use of these methods. The addition of insoluble polyvinylpolypyrrolidone (PVPP) during leaf extractions effectively removed phenols permitting quantitation of Rubisco. Relationships among maximum rates of photosynthesis and concentrations of nitrogen and Rubisco were then investigated in ten species native to Australia. Total nitrogen and the major pools of N in foliage varied greatly between species. Equally, within species N-partitioning was highly plastic, as affected by different concentrations and forms of N applied in sand culture (0.5 or 8 mM, nitrate or ammonium). In Hakea prostrata, for example, the proportion of total N present as soluble proteins varied between 43 and 71%, while the proportion of total N present as Rubisco N ranged between 9.4 and 30.0%, and the contribution of Rubisco to soluble proteins varied between 21 and 42%. The measured concentration of Rubisco varied between 40% and 600% of that estimated from enzyme kinetics and measured rates of photosynthesis. Generally there was a large ‘excess’ of Rubisco, and in only two cases was the measured concentration of Rubisco significantly less than predicted. Total N, soluble protein and Rubisco concentrations were poorly related to maximum rates of photosynthesis, while the relationship between photosynthesis and Rubisco was worse than that with N, primarily due to the plants’ variable over-investment in Rubisco.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3