Leaf traits of Eucalyptus arenacea (Myrtaceae) as indicators of edge effects in temperate woodlands of south-eastern Australia

Author:

Wright Thomas E.,Kasel Sabine,Tausz Michael,Bennett Lauren T.

Abstract

Despite recent trends in using plant functional traits to describe ecosystem responses to environmental change, few studies have examined the capacity of traits to represent environmental variation for individual species at small spatial scales, such as across forest edges. We examined the utility of 12 easy-to-measure leaf traits (fresh weight to dry weight ratio, specific leaf area (SLA), osmolality, δ13C, δ15N, and concentrations of key nutrients) to detect edge effects on the function of a dominant woodland tree, Eucalyptus arenacea Marginson & Ladiges. The study included replicate E. arenacea trees at the woodland edge (0 m) and interior (75 m from edge) of three woodlands adjoined by pasture and three woodlands adjoined by plantation established on pasture. Leaf traits proved useful in identifying potentially degrading processes at woodland edges. Notably, greater leaf P concentrations and δ15N in edge than interior trees irrespective of edge type (pasture versus plantation) indicated persistent effects of nutrient enrichment from agricultural practices; and leaf osmolality and Na concentrations indicated greatest exposure of woodland trees to salinity at pasture edges. Nonetheless, leaf traits proved less useful in detecting edge effects on tree physiology, with most traits being non-responsive to a pronounced interactive effect of edge type and distance from edge on physiological measures. In addition, negative correlations between SLA and physiological measures of tree productivity were contrary to global relationships. Overall, we found that although particular leaf traits indicated potentially degrading processes of nutrient enrichment and salinisation, they were not reliable indicators of small-scale edge effects on the physiological function of E. arenacea.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3