Abstract
Metal-free catalytic hydrogenation of ethene has been examined using high-level [G3(MP2)-RAD] ab initio molecular orbital theory. The dependence of the catalytic activity on the nature of the catalyst Z–X–H has been explored. We find that the catalytic activity is generally greater as Z–X–H becomes more acidic, both for first- and second-row atoms X. Molecules in which X is a second-row atom generally lead to more effective catalysis than the corresponding first-row analogues. The proton affinity at X of Z–X–H also contributes significantly to the catalysis in some cases (e.g. amines).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献