Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea

Author:

Velazco J. I.,Cottle D. J.,Hegarty R. S.

Abstract

Nitrate may serve as a non-protein nitrogen (NPN) source in ruminant diets while also reducing enteric methane emissions. A study was undertaken to quantify methane emissions of cattle when nitrate replaced urea in a high concentrate diet. Twenty Angus steers were allocated to two treatment groups and acclimated to one of two iso-energetic and iso-nitrogenous finisher rations (containing NPN as urea or as calcium nitrate), with all individual feeding events recorded. A single methane measurement device (C-lock Inc., Rapid City, SD, USA) was exchanged weekly between treatments (2 × 1-week periods per treatment) to provide estimations of daily methane production (DMP; g CH4/day). A 17% reduction in estimated DMP (P = 0.071) resulted from nitrate feeding, attributed to both a tendency for reduced dry matter intake (DMI; P = 0.088) and H2 capture by the consumed nitrate. NO3-fed cattle consumed a larger number of meals (14.69 vs 7.39 meals/day; P < 0.05) of smaller size (0.770 vs 1.820 kg/meal) each day, so the average interval between a feeding event and methane measurement was less in NO3-fed cattle (3.44 vs 5.15 h; P < 0.05). This difference could potentially have skewed the estimated DMP and contributed to the tendency (P = 0.06) for NO3-fed cattle to have a higher methane yield (g CH4/kg DMI) than urea-fed cattle. This study found short-term methane emission measurements made over 2 weeks (per treatment group) were adequate to show dietary nitrate tended to reduce emission and change the feeding pattern of feedlot cattle. Changes in feeding frequency may have confounded the ability of short-term methane measurements to provide data suitable for accurately estimating methane per unit feed intake.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3