Carbon sequestration and selected hydraulic characteristics under conservation agriculture and traditional tillage practices in Malawi

Author:

Simwaka Pacsu L.ORCID,Tesfamariam Eyob H.,Ngwira Amos R.,Chirwa Paxie W.

Abstract

Conservation agriculture (CA) is increasingly promoted among smallholder farmers of sub-Saharan Africa in a quest to improve food security while sustaining the natural resource base of the agro-ecosystems where agriculture is based. The aim of this study was to investigate the effects of CA and traditional tillage on soil organic carbon (SOC) and selected hydraulic properties in two contrasting agro-ecological zones of Malawi. Six farmers hosted on-farm trials in each location, with each farmer having the following treatments: CA with continuous sole maize (CA-SM), CA with maize–legume intercrops (CA-ML), and traditional tillage with continuous sole maize (CT-SM). Soil samples were randomly collected in October 2015, from farmers’ fields located in Chipeni, Chinguluwe, Lemu, and Zidyana where CA had been implemented for 10 years (2005–2015) at six depth intervals: 0–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm. Bulk density, soil water characteristics, and pore size distribution were determined using undisturbed core samples. At all sites, CA improved total SOC, carbon stocks, and the stable fraction of particulate organic carbon. Maize–legume intercropping under CA had 35%, 33%, and 73% more total SOC than CT-SM in Chipeni, Lemu, and Zidyana respectively. In Chinguluwe and Lemu, CA-ML had 0.54 and 0.50 g kg–1 respectively more stable fraction of particulate organic carbon (POMP) than CT-SM; whereas in Chipeni, CA-SM had 0.73 g kg–1 higher POMP compared with CT-SM. CA also improved soil porosity, pore size distribution, and water retention capacity by increasing the proportion of mesopores and micropores compared with CT-SM. Thus, changing management practices from CT-SM to CA has the potential to improve the soil organic matter and soil hydraulic properties across agro-ecological zones in Malawi, which is important for sustainable agriculture. Farmers should be encouraged to minimise tillage, retain residues as mulch on the soil surface, and practice crop rotation.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3