Sorption and infiltration in heterogeneous media

Author:

Philip JR

Abstract

Problems of unsteady water transfer in unsaturated heterogeneous media are mathematically very complicated, and, in general, each problem for each medium requires its own ad hoc solution (e.g, by high speed computer). The approach is necessarily a piecemeal one and does not lead readily to generalizations. This paper reports a first attempt at an alternative method of attack, in which we identify and explore subclasses of problems that are amenable to quasi-analytical methods of analysis. The work deals, specifically, with problems of absorption and desorption in one-dimensional heterogeneous media. The extension to one-dimensional infiltration is also indicated. We consider 'scale-heterogeneous' media, i.e, media in which the internal geometry is everywhere geometrically similar but in which the characteristic internal length scale is free to vary spatially. The spatial variation of the hydraulic conductivity function and of the capillary potential function are thus connected. It is shown that, if the conductivity and potential functions are of certain simple forms (which are reasonable approximations to those found for soils, at least over certain ranges of potential), the flow equation, with potential as a variable, may be solved readily by established methods. The potential profiles preserve similarity, but the moisture profiles (which are found by a simple supplementary calculation) do not. Examples are given of absorption and desorption in five scale-heterogeneous media. The examples are for �0/�1 = 100 (absorption) and 0.01 (desorption), where �0 is the initial potential and �1 is the potential at which water is supplied to, or removed from, the surface. The solutions may be adapted very simply to apply to any other scale-heterogeneous medium of this class. They can also be extended readily to embrace other values of �0/�1, by reference to solutions in the literature, or by use of a rapid and accurate numerical method. Solutions of the corresponding one-dimensional infiltration problem may be found by similar means, use being made of quasi-analytical methods previously established in the analysis of infiltration in homogeneous media.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3