Photosynthetic Acclimation of Alocasia macrorrhiza (L.) G. Don

Author:

Chow WS,Qian L,Goodchild DJ,Anderson JM

Abstract

The photosynthetic acclimation of Alocasia macrorrhiza (L.) G. Don, a species naturally occurring in deep shade in rainforests, has been studied in relation to a wide range of controlled irradiances during growth (~3-780 �mol photons m-2 s-1 of fluorescent or incandescent light, 10 h light/ 14 h dark). At the maximum growth irradiances, the light- and CO2-saturated rates of O2 evolution per unit leaf area were ~4 times as high as at low irradiance, and approached those of glasshouse-grown spinach. Growth at maximum irradiances reduced the quantum yield of O2 evolution only slightly. Changes in the anatomy of leaf tissue, the ultrastructure of chloroplasts and the composition of chloroplast components accompanied the changes in photosynthetic functional characteristics. At low growth irradiance, palisade cell chloroplasts were preferentially located adjacent to the distal periclinal cell walls and had large granal stacks, and the destacked thylakoids had a very low surface charge density. In contrast, at higher growth irradiance, palisade cell chloroplasts were preferentially located adjacent to the anticlinal cell walls; they had small granal stacks, large stromal space, and a high surface charge density on the destacked thylakoids. The number of chloroplasts per unit section length increased with growth irradiance. Ribulosebisphosphate carboxylase activity per unit leaf area increased markedly with irradiance. Photosystem II, cytochrome f and latent ATPase activity per unit chlorophyll increased to a lesser extent. While the chlorophyll a/chlorophyll b ratio increased substantially with growth irradiance, the chlorophyll content per unit leaf area declined slightly. Our results show that coordinated changes in the structure of leaf tissue, and the organisation and composition of chloroplast components are responsible for Alocasia being capable of acclimation to high as well as low irradiance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3