Gamma Radiation-Induced Unsaturated P(VDF-CTFE) Membranes with Improved Mechanical Properties

Author:

Wang Huazhao,Liu Yu,Xiao Yaoxin,Chen Jiafu,Xu Jinjiang,Zhang Haobin,Sun Jie,Li Jie,Zhu ChunhuaORCID,Su Jihu,Liu Feng

Abstract

Poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) membranes were prepared by drop-casting with tetrahydrofuran (THF), and were then radiated by a low dose of gamma radiation without any other reagents. The apparent colour of the freshly prepared film was a semi-transparent white, which gradually darkened and finally turned black after 10.2kGy gamma radiation. Meanwhile, the yield and breaking strength of the membrane both improved. X-Ray diffraction (XRD) spectra showed that the structure of the microcrystal of the irradiated P(VDF-CTFE)-THF membrane was not changed. FT-IR analysis showed that the structure of the newly formed double bonds was dominated by –CF2–CF=CH–CF2–, which was formed by both dehydrofluorination and dehydrochlorination. This structure was further confirmed by 1H NMR spectra. The intermediates, such a radical-containing double bonds (–(CF=CH)n–C•F–) formed in this process were traced by electron paramagnetic resonance (EPR) spectroscopy. The thermal and mechanical properties were studied by gel permeation chromatography (GPC), thermogravimetric analysis (TGA), stress–strain and dynamic mechanical analysis (DMA), and all the changes of microstructure and optimization of apparent properties were not found in the corresponding membrane prepared by a solution-cast method with ethyl acetate (EtOAc). Therefore, this paper briefly analyses the probable mechanism of using low dose of gamma radiation to improve the mechanical properties of the P(VDF-CTFE) film prepared with THF.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3