13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions

Author:

Laws Edward A.,Popp Brian N.,Cassar Nicolas,Tanimoto Jamie

Abstract

The isotopic composition of organic carbon buried in marine sediments is an appealing proxy for palaeo CO2 concentrations due to the well-documented effect of CO2 concentrations on carbon fractionation by phytoplankton. However, a number of factors, in addition to CO2 concentrations, influence this fractionation. Included among these factors are cell geometry, in particular surface/volume ratios, growth rate, and the presence of CO2 concentrating mechanisms. Other potentially confounding factors are calcification, diagenesis, and the nature of the growth-rate-limiting factor, e.g. light vs nutrients. Because of these confounding factors, palaeoreconstructions based on the isotopic composition of organic carbon (δ13C) will almost certainly have to be based on the isotopic signatures of organic compounds that can be associated with a single species, or group of physiologically similar species. Long-chain alkenones produced by certain species of coccolithophores may provide a suitable diagnostic marker. By combining the δ13C of the alkenone carbon with the δ13C of coccolith carbon and the Sr/Ca ratio of the coccoliths, it is possible to calculate the extent of carbon fractionation (εp) and estimate growth rates. However, active transport of inorganic carbon tends to make εp insensitive to CO2 concentrations when the ratio of growth rate to CO2 concentration exceeds 0.285/rkg mol–1d–1, where r is the effective spherical radius of the cell in microns. Palaeo CO2 concentrations calculated from alkenone and coccolith δ13C data capture the gross features of CO2 concentrations in the Vostok ice core, but explain only 30–35% of the variance in the latter. The absence of a higher correlation may in part reflect the impact of active transport, particularly during glacial times. The impact of active transport may have been less severe prior to the Pleistocene, since CO2 concentrations are believed to have been higher than present-day values during most of Phanerozoic time.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3