Effects of plant invaders on rhizosphere microbial attributes depend on plant identity and growth stage

Author:

Kapagianni Pantelitsa D.ORCID,Topalis Ioannis,Gwynn-Jones Dylan,Menkissoglu-Spiroudi Urania,Stamou George P.,Papatheodorou Efimia M.

Abstract

Invasive species are considered a serious threat to local biodiversity and ecosystem functioning. Invasive success is often dictated via a plant’s capacity to influence belowground processes. We considered the role of two invasive plants – Solanum elaeagnifolium Cav, a perennial, and Conyza bonariensis L, an annual species – on the rhizosphere soil microbial communities and soil functionality. This study included the cultivation of each of the invasive species and bare soil as a control, in a mesocosm experiment. Rhizosphere soil was collected at three samplings during plant growth. Phospholipid fatty acids and the activities of β-glucosidase, N-acetylglucosaminidase, urease, peroxidase, polyphenol oxidase and acid phosphomonoesterase were analysed. Soil planted with invasive plants exhibited different enzyme activities and microbial biomasses compared with controls. Also, the plant species had soil enzyme profiles that differed from each other, mostly at the vegetative stage, lesser at the maturity stage, with no difference recorded at the middle of the annual cycle. The differences between plant species were significant for microeukaryotes, actinomycetes and the fungi/bacteria and Gram-positive/Gram-negative bacteria ratios but not significant for total microbial biomass and biomasses of Gram-positive and -negative bacteria and fungi in all samplings. The network of interactions among the microbial community and enzymes was affected by plant presence, plant species as well as plant growth stage. This study suggests that life-cycle stage is important in relation to invasive species influence on belowground processes.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3