Phosphorus, copper and zinc requirements of no-till wheat crops and methods of collecting soil samples for soil testing

Author:

Bolland M. D. A.,Brennan R. F.

Abstract

Plant testing of wheat crops in south-western Australia, sown using no-till for >7 years, often indicates marginal to deficient levels of the soil immobile elements phosphorus (P), copper (Cu) and zinc (Zn). In this region, P, Cu and Zn fertilisers are usually placed (drilled) with the seed while sowing crops. However, in no-till cropping, because the fertilisers are placed in the same rows as the seed during sowing, in the years after application the 3 elements are no longer mixed through the top 10 cm of soil. It may be more effective to deep band fertiliser below seed while sowing no-till crops. Alternatively, cultivating the top 10 cm of soil every 5–7 years would mix previously applied fertiliser P, Cu and Zn through the topsoil, which should improve the effectiveness of the fertiliser residues for the current and subsequent no-till crops. In field experiments in paddocks in south-western Australia sown using no-till for 7–11 years, we compared these 2 alternative methods to the standard no-till practice of drilling fertiliser with the seed in the same crop rows. No shoot or grain yield responses of wheat were obtained. The exception was that in 1 experiment cultivating the topsoil before drilling P with seed was more effective than drilling or deep banding P. Concentrations of P, Cu and Zn measured in wheat shoots or grain were either unaffected by treatment, or, compared with drilling fertiliser with seed, were larger for the other 2 methods, indicating these 2 methods were more effective at increasing the concentrations of the elements in plant parts. The 3 elements have been shown to have good residual values for crop production in the region. Therefore, we recommend that experiments should not be performed in existing no-till paddocks until the residual value of P, Cu and Zn applied in the old cropping system has become negligible, which could, for Cu and Zn in particular, take many years. In the second year, the experiments were used to compare 4 different ways of collecting soil samples from the top 10 cm of soil (standard soil sampling depth used in south-western Australia) to measure soil test P (Colwell), Cu (ammonium oxalate) and Zn (DTPA). The samples were either collected randomly within the plots (present method), always in the rows used to sow seed and apply fertiliser, always between the rows, or half in and half between the rows. Soil test values for P, Cu and Zn were unaffected by amount of element applied and method of application when samples were collected between rows, at random, or from all banded treatments where fertiliser was placed below the 0–10 cm sampling depth. Soil test values for samples collected in rows increased as the amount of fertiliser applied increased and were about double the values for samples collected half in and half between rows.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3