Regulation of the chloroplastic copper chaperone (CCS) and cuprozinc superoxide dismutase (CSD2) by alternative splicing and copper excess in Glycine max

Author:

Sagasti Sara,Bernal María,Sancho Diana,del Castillo Miren B.,Picorel Rafael

Abstract

Metal homeostasis is an important aspect of plant physiology, and the copper transport into the chloroplast and its fate after delivery is of special relevance for plants. In this work, the regulation of the chloroplastic copper chaperone for the cuprozinc superoxide dismutase (GmCCS) and its target, the cuprozinc superoxide dismutase (GmCSD2), was investigated in photosynthetic cell suspensions and entire plants from Glycine max (L.) Merr. Both genes were expressed in cell suspensions and in all plant tissues analysed, and their RNAs matured by alternative splicing with intron retention (IntronR). This mechanism generated a spliced and three non-spliced mRNAs in the case of GmCCS but only a spliced and a non-spliced mRNAs in GmCSD2. Copper excess strongly upregulated the expression of both fully spliced mRNAs but mostly unaffected the non-spliced forms. In entire plants, some tissue specificity was also observed depending on copper content status. At the protein level, the GmCCS was mostly unaffected but the GmCSD2 was strongly induced under copper excess in all subcellular fractions analysed, suggesting a post-transcriptional regulation for the former. This different protein regulation of the chaperone and its target may indicate some additional function for the CSD2 protein. In addition to its well-known superoxide dismutase (SOD) activity, it may also function as a metal sink in copper excess availability to avoid metal cell damage. Furthermore, the GmCCS seems to be present in the stroma only but the GmCSD2 was present in both stroma and thylakoids despite the general idea that the SOD enzymes are typically soluble stroma proteins. The presence of the SOD enzyme on the surface of the thylakoid membranes is reasonable considering that the superoxide radical (O2–) is preferentially formed at the acceptor side of the PSI.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3