Progesterone regulation of the endometrial WNT system in the ovine uterus

Author:

Satterfield M. Carey,Song Gwonhwa,Hayashi Kanako,Bazer Fuller W.,Spencer Thomas E.

Abstract

WNT signalling regulates cell proliferation, differentiation, polarity and organisation. The present study investigated the effects of progesterone (P4) on the endometrial WNT system in relation to blastocyst development and growth in sheep. Ewes received daily intramuscular injections of either corn oil (CO) vehicle or 25 mg P4 from 36 h after mating (Day 0) until hysterectomy on Day 9 or 12. Another group received P4 until Day 8 and 75 mg mifepristone (RU486) from Day 8 to Day 12. Early P4 treatment increased blastocyst growth on Days 9 and 12, whereas no blastocysts were recovered from P4 + RU486-treated ewes. Levels of WNT2 mRNA in the stroma and WNT11 and WNT7A mRNAs in the endometrial luminal epithelia (LE) were reduced in P4 + RU486-treated ewes on Day 9, whereas WNT11 mRNA was reduced in the endometria of both P4- and P4 + RU486-treated ewes on Day 12. On Day 12, WNT2 mRNA was increased in the stroma, WNT7A mRNA was increased in the LE and WNT5A mRNA was increased in the LE and stroma of P4 + RU486- compared with P4-treated ewes. DKK1 mRNA was absent in the endometrial stroma of P4 + RU486-treated ewes. Expression of transcription factor 7 like-2 (TCF7L2) was transiently increased in endometrial epithelia of P4-treated ewes on Day 9, but decreased in these ewes on Day 12. MSX1 mRNA was decreased by P4 treatment on Day 9 and levels of both MSX1 and MSX2 mRNA were higher in P4 + RU486-treated ewes on Day 12. Thus, P4 modulates the endometrial WNT system and elicits a transient decline in selected WNT pathways and signalling components, which is hypothesised to alter tight and adherens junctions, thereby stimulating blastocyst growth and development.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3