Field Metabolism and Turnover in the Golden Bandicoot (Isoodon-Auratus) and Other Small Mammals From Barrow Island, Western-Australia

Author:

Bradshaw SD,Morris KD,Dickman CR,Withers PC,Murphy D

Abstract

Barrow Island, which lies about 90 km north of Onslow off the arid Western Australian Pilbara coast, experienced its driest year on record in 1990 with a total of only 122.4 mm of rain. Golden bandicoots captured in November 1990 evidenced poor condition and mean body mass was a low 242.6 +/- 10.9 g with-a total body water content (TBW) of 76.3 +/- 1.4%. Despite this substantial loss of body water and solids, the animals maintained water and electrolyte balance during the period of turnover [water influx 79.5 +/- 6.9 v. efflux 83.3 +/- 5-7 mL (kg0.82 day)-1 and sodium influx 4.9 +/- 0.7 v. efflux 5.3 +/- 0.7 mmol (kg day)-1]. By April 1991, although only a further 37.4 mm of rain had been recorded on Barrow Island, the condition of the bandicoots had improved markedly, as a result of exploitation of insect resources, and their mean body mass had increased to 306.5 +/- 22.6 g and TBW decreased to 62.5 +/- 1.4% (both P < 0.001), the latter reflecting enhanced fat stores. This general improvement in condition of the bandicoots was in marked contrast to that of other herbivorous marsupials on the island. Rates of water and sodium turnover of the golden bandicoots were, however, not significantly different from those measured in the previous November, Field Metabolic Rates (FMRs), measured with doubly labelled water ((HHO))-H-3-O-18, were extremely low, averaging only 0.45 +/- 0.26 mL CO2 (g h)-1, which is very close to laboratory estimates of 0.35 +/- 0.09 mL O2(g h)-1 for the basal metabolic rate of this species. A major cyclone struck Barrow Island on 3 March 1992, with 162 mm of rain falling in 24 h, and turnover measurements in May of that year revealed a substantial increase in rates of water flux. Mean body mass further increased to 332.6 +/- 8.5 g and TBW averaged 61.8 +/- 1.1%. Water turnover rates were significantly elevated when compared with April of the previous year with an influx of 112.5 +/- 7.3 and an efflux of 119.0 +/- 7.6 mL (kg0.82 day)-1 respectively (both P = 0.001). Rates of sodium turnover, however, were only slightly lower at 3.6 +/- 0.5 and 4.1 +/- 0.5 mmol (kg day)-1 for influx and efflux respectively (P = 0.056 for influx only), suggesting a slight decrease in the average sodium content of the diet. The volume of water required to maintain hygric balance was estimated by regression analysis at 26.7 mL day-1 [=88.3 mL (kg0.82 day)-1] in November 1990, and 33-9 mL day-1 [=85.2 mL (kg0.82 day)-1] in May 1992, following rain. The FMR of eight bandicoots was very significantly elevated to 1.39 +/- 0.23 mL CO2 (g h)-1 after rain, which is substantially higher than even the FMR of 0.91 +/- 0.07 mL CO2(g h)-1, or 644 kJ day-1, reported for the closely related southern brown bandicoot (Isoodon obesulus) studied in the region of Perth by Nagy et al. (1991). Turnover rates of water and sodium for two rodent species, the Barrow Island mouse (Pseudomys nanus) and the rock rat (Zyzomys argurus), were very similar to those recorded for golden bandicoots in the dry period, but FMRs were a little higher at 0.80 +/- 0.26 and 0.59 +/- 0-36 mL CO2(g h)-l respectively. The FMR of Barrow Island mice increased very significantly to a mean of 2.73 +/- 0.50 mL CO2(g h)-l after rain, but rock rats were not caught at this time. The data document the impressive ability of these mammals to avail themselves of extremely limited resources and maintain physiological homoiostasis under conditions of extreme aridity.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3