Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling

Author:

Mistick Katherine A.ORCID,Campbell Michael J.ORCID,Dennison Philip E.ORCID

Abstract

Background Situational awareness is an essential component of wildland firefighter safety. In the US, crew lookouts provide situational awareness by proxy from ground-level locations with visibility of both fire and crew members. Aims To use machine learning to predict potential lookout locations based on incident data, mapped visibility, topography, vegetation, and roads. Methods Lidar-derived topographic and fuel structural variables were used to generate maps of visibility across 30 study areas that possessed lookout location data. Visibility at multiple viewing distances, distance to roads, topographic position index, canopy height, and canopy cover served as predictors in presence-only maximum entropy modelling to predict lookout suitability based on 66 known lookout locations from recent fires. Key results and conclusions The model yielded a receiver-operating characteristic area under the curve of 0.929 with 67% of lookouts correctly identified by the model using a 0.5 probability threshold. Spatially explicit model prediction resulted in a map of the probability a location would be suitable for a lookout; when combined with a map of dominant view direction these tools could provide meaningful support to fire crews. Implications This approach could be applied to produce maps summarising potential lookout suitability and dominant view direction across wildland environments for use in pre-fire planning.

Funder

USDA Forest Service

National Science Foundation

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3