Effects of aeration, sediment grain size and burial on stream litter breakdown and consumer performance: a microcosm study

Author:

Pereda Olatz,Arroita Maite,Aristi Ibon,Flores Lorea,Larrañaga Aitor,Elosegi Arturo

Abstract

Turbulence and aeration are reduced in many streams during low-flow periods as a consequence of drought or water abstraction, thus affecting invertebrate interactions and pivotal ecosystem processes such as the breakdown of organic matter (OM). These effects can be larger in the hyporheic zone (HZ), the ecotone connecting the surface stream and groundwater, especially when fine sediments reduce hydraulic conductivity. In addition, OM breakdown in the HZ could depend on the availability of OM in the benthic zone (BZ), because the latter would not only be a more accessible, and thus preferred, food resource, but also more easily scoured downstream. In a laboratory microcosm experiment of 28 days duration, we manipulated aeration, sediment size and location of OM (either all buried or half buried with half on the surface, simulating the HZ and BZ respectively). Six mayfly (Habroleptoides) individuals and four stonefly (Capnioneura) individuals were enclosed in each microcosm and the consumption of OM was measured. Lack of aeration reduced oxygen saturation from 94 to 66%, reducing OM consumption particularly on the surface, in contrast with our expectations. As hypothesised, the availability of surface OM significantly reduced invertebrate consumption of buried OM. Habroleptoides performed better than Capnioneura, especially in fine sediments. The results suggest that reduced turbulence can affect invertebrate trophic interactions as well as the decomposition of OM, depending on sediment grain size and the location of OM.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3