Variability among Festuca arundinacea cultivars for tolerance to and recovery from waterlogging, salinity and their combination

Author:

Menon-Martínez F. E.,Grimoldi A. A.,Striker G. G.ORCID,Di Bella C. E.ORCID

Abstract

Frequency and intensity of floods and the extent of salt-affected lands are expected to increase in pastures and grassland ecosystems as a result of global climate change. This study evaluated the effects of waterlogging, salinity (150 mm NaCl, ~15 dS m–1) and their combination over 14 days of treatment on morphological and growth traits of seven cultivars of Festuca arundinacea (tall fescue). Recovery was also assessed after a 14-day growth period under aerated, non-saline conditions (recovery phase). All cultivars survived the imposed stresses, showing greater tolerance to waterlogging than to salinity or the combined stress, evaluated as a response ratio of total dry mass relative to the control. The combined stress provoked growth lower than predicted by a multiplicative model in one cultivar, growth equal to the model in three cultivars and growth higher than the model in three cultivars. High variability among cultivars in response to each stress and phase was observed; this was more evident for relative growth rate of roots than of shoots. Plant morphological traits were affected by treatments in different ways; mature tiller weight was maintained, and tiller number decreased by 79–71% under waterlogging and combined stresses, whereas the opposite responses occurred under salinity. During the recovery phase, plants in all stress treatments had lower tiller numbers than controls and prioritised the growth of pre-existing tillers, which were heavier. Number of dead leaves per plant increased in saline and combined treatments. In general, F. arundinacea proved more tolerant to waterlogging than to salinity or combined treatments, and showed promising variability among cultivars with respect to root relative growth rate under the evaluated stresses, which can be used in future breeding programs. The findings also provide a basis for further research into the tolerance mechanisms involved.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3