Cultivar and environmental effects on malting quality in barley

Author:

Eagles HA,Bedggood AG,Panozzo JF,Martin PJ

Abstract

Improvements in malting quality are important if barley from south-eastern Australia is to remain competitive on export markets. Grain is desired that will produce high levels of malt extract and diastatic power but has moderate levels of grain protein. To examine cultivar and environmental effects, especially nitrogen (N) fertilizer, on levels of malting quality parameters and their correlations, seven cultivars of barley were grown in a fallow and pea stubble rotation with five levels of N fertilizer in the Wimmera region of Victoria in 1990 and 1991. The first season was relatively dry and warm, while the second was wetter and cooler. Grain yield and malt extract were markedly lower in 1990 than 1991, and grain protein concentration, grain screenings and diastatic power were significantly higher. Grain protein and diastatic power increased almost linearly with increasing N application, with a higher rate of increase in 1990 than in 1991. Malt extract declined almost linearly with increasing N application, but the change in rate of decline between seasons was less than the change of rate of increase of grain protein. Environmental correlations between protein concentration and malt extract, and between malt extract and diastatic power, were negative. They were close to -1.0 when the environmental factor varying was restricted to N fertilizer, but were of a smaller absolute magnitude when seasons and rotations were also allowed to vary. In contrast, genotypic correlations were of intermediate magnitude. Broad-sense heritabilities for malt extract and diastatic power were relatively high, even with such contrasting seasons. This indicates that it should be possible to develop cultivars for south-eastern Australia which have high malt extract and high diastatic power at low protein levels. However, applications of N fertilizer that raise grain protein concentration will reduce malt extract, with the effect much greater in drier, warmer seasons.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3