Sucrose transport-related genes are expressed in both maternal and filial tissues of developing wheat grains

Author:

Bagnall Neil,Wang Xin-Ding,Scofield Graham N.,Furbank Robert T.,Offler Christina E.,Patrick John W.

Abstract

In developing wheat grains (Triticum turgidum var. durum cv. Fransawi), post-sieve element transport of phloem-imported photoassimilates (sucrose) includes membrane transport, to and from the grain apoplasm, between symplasmically-isolated maternal and filial tissues. The cellular location and mechanism of these membrane transport steps were explored during rapid grain fill. Genomic Southern analysis indicated the presence of a multigene family of sucrose/H + symporters (SUTs). One or more SUTs were highly expressed in developing grains, as were P-type H + /ATPase(s) and a sucrose binding protein (SBP). Transcripts of these genes were detected in vascular parenchyma, nucellar projection and aleurone cells. Antibodies, raised against a SUT, an H + /ATPase and a SBP, were selectively bound to plasma membranes of vascular parenchyma cells, nucellar projection transfer cells and modified aleurone/sub-aleurone transfer cells. The nucellar projection transfer cells and modified aleurone/sub-aleurone transfer cells exhibited strong proton pumping activity. In contrast, SUT transport function was restricted to filial tissues containing modified aleurone/sub-aleurone transfer cells. Based on these findings, we conclude that SUTs expressed in maternal tissues do not function as sucrose/H + symporters. Membrane exchange from nucellar projection transfer cells to the endosperm cavity occurs by an as yet unresolved mechanism. Sucrose uptake from the endosperm cavity into filial tissues is mediated by a SUT localised to plasma membranes of the modified aleurone/sub-aleurone transfer cells.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3