Hand-made cloning approach: potentials and limitations

Author:

Vajta G.,Kragh P. M.,Mtango N. R.,Callesen H.

Abstract

Two major drawbacks hamper the advancement of somatic cell nuclear transfer in domestic animals. The first is a biological problem that has been studied extensively by many scientists and from many viewpoints, including the cell, molecular and developmental biology, morphology, biochemistry and tissue culture. The second is a technical problem that may be responsible for 50% or more of quantitative and/or qualitative failures of routine cloning experiments and is partially the result of the demanding and complicated procedure. However, even the relatively rare documented efforts focusing on technique are usually restricted to details and accept the principles of the micromanipulator-based approach, with its inherent limitations. Over the past decade, a small alternative group of procedures, called hand-made cloning (HMC), has emerged that has the common feature of removal of the zona pellucida prior to enucleation and fusion, resulting in a limited (or no) requirement for micromanipulators. The benefits of HMC are low equipment costs, a simple and rapid procedure and an in vitro efficiency comparable with or higher than that of traditional nuclear transfer. Embryos created by the zona-free techniques can be cryopreserved and, although data are still sparse, are capable of establishing pregnancies and resulting in the birth of calves. Hand-made cloning may also open the way to partial or full automation of somatic cell nuclear transfer. Consequently, the zona- and micromanipulator-free approach may become a useful alternative to traditional cloning, either in special situations or generally for the standardisation and widespread application of somatic cell nuclear transfer.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Production of Water Buffalo SCNT Embryos by Handmade Cloning;Methods in Molecular Biology;2023

2. Klonen von Nutztieren durch somatischen Zellkerntransfer;Biotechnologie bei Nutztieren 2;2023

3. Handmade cloning: a developing alternative to traditional SCNT cloning methods;International Conference on Biomedical and Intelligent Systems (IC-BIS 2022);2022-12-06

4. Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review;Annals of Animal Science;2022-01-01

5. Somatic Cell Nuclear Transfer and its Applications in Buffalo (Bubalus bubalis);Biotechnological Applications in Buffalo Research;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3