Associative diazotrophic bacteria from forage grasses in the Brazilian semi-arid region are effective plant growth promoters

Author:

Antunes Gabiane dos Reis,Santana Sheilla Rios Assis,Escobar Indra Elena Costa,Brasil Marivaine da Silva,Araújo Gherman Garcia Leal de,Voltolini Tadeu Vinhas,Fernandes-Júnior Paulo Ivan

Abstract

The study of plant growth-promoting bacteria (PGPB) can identify outstanding bacteria for crops. For forage grasses adapted to drylands, the selection of PGPB can increase the field performance of pastures. The aim of this study was to isolate, and characterise at molecular, biochemical and symbiotic levels, diazotrophic bacteria obtained from buffel grass (Cenchrus ciliaris), sorghum (Sorghum bicolor) and Tifton 85 (Cynodon spp.) from Brazilian semi-arid region fields. Field-grown plants were collected, and the roots were surface-disinfected, crushed and inoculated in a semi-solid medium. After the formation and confirmation of microaerophilic pellicles, the bacteria were isolated and purified. All bacterial isolates were subjected to nifH gene amplification and identified by their partial 16S rRNA gene sequences. The bacteria were evaluated for the production of auxins and siderophores, calcium phosphate solubilisation, and diazotrophic ability as ‘in vitro’ plant growth-promotion traits. A plant inoculation assay was conducted to assess the plant growth-promotion abilities of the bacterial isolates. Twenty-one bacterial isolates harboured the nifH gene (nifH+), among which nine were obtained from sorghum, eight from buffel grass, and four from Tifton 85. The bacterial isolates were classified as Bacillus (8), Stenotrophomonas (7), Agrobacterium (4), Cellulomonas (1) and Paenibacillus (1). All were shown to be auxin producers, with 14 isolates showing diazotrophic capacity ‘in vitro’. Fourteen isolates increased plant N content, but the bacterial strains ESA 392 and ESA 398 (Bacillus), ESA 397 and ESA 407 (Stenotrophomonas), and ESA 401 (Agrobacterium) were shown to promote both plant growth and N nutrition. These strains are candidates for further assays to evaluate their agronomic performance under field conditions, aiming inoculant production for forage grasses in drylands.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3