Water balance changes in a crop sequence with lucerne

Author:

Dunin F. X.,Smith C. J.,Zegelin S. J.,Leuning R.

Abstract

In a detailed study of soil water storage and transport in a sequence of 1 year wheat and 4 years of lucerne, we evaluated drainage under the crop and lucerne as well as additional soil water uptake achieved by the subsequent lucerne phase. The study was performed at Wagga Wagga on a gradational clay soil between 1993 and 1998, during which there was both drought and high amounts of drainage (>10% of annual rainfall) from the rotation. Lucerne removed an additional 125 mm from soil water storage compared with wheat (root-zone of ~1 m), leading to an estimated reduction in drainage to 30–50% of that of rotations comprising solely annual crops and/or pasture. This additional soil water uptake by lucerne was achieved through apparent root extension of 2–2.5 m beyond that of annual crops. It was effective in generating a sink for soil water retention that was about double that of annual crops in this soil. Successful establishment of lucerne at 30 plants/m2 in the first growing season of the pasture phase was a requirement for this root extension. Seasonal water use by lucerne tended to be similar to that of crops in the growing season between May and September, because plant water uptake was confined to the top 1 m of soil. Uptake of water from the subsoil was intermittent over a 2-year period following its successful winter establishment. In each of 2 annual periods, uptake below 1 m soil depth began late in the growing season and terminated in the following autumn. Above-ground dry matter production of lucerne was lower than that by crops grown in the region despite an off-season growth component that was absent under fallow conditions following cropping. This apparent lower productivity of lucerne could be traced in part to greater allocation of assimilate to roots and also to late peak growth rates at high temperatures, which incurred a penalty in terms of lower transpiration efficiency. The shortfall in herbage production by lucerne was offset with the provision of timely, high quality fodder during summer and autumn. Lucerne conferred indirect benefits through nitrogen supply and weed control. Benefits and penalties to the agronomy and hydrology of phase farming systems with lucerne are discussed.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3