Rare earth elements as tracers of active colloidal organic matter composition

Author:

Catrouillet CharlotteORCID,Guenet Héléne,Pierson-Wickmann Anne-Catherine,Dia Aline,LeCoz Martine Bouhnik,Deville Sarah,Lenne Quentin,Suko Yasushi,Davranche Mélanie

Abstract

Environmental contextThe origin of organic matter at Earth’s continental surface can be either terrestrial or microbial, and its precise composition can influence its reactivity towards metals. We investigated the potential of rare earth elements to fingerprint the origin of various organic matters through their reactivity and composition. The rare earth element patterns can be useful tools to determine the reactivity and also pristine source of natural organic matter. AbstractRare earth elements (REEs) have been shown to be efficient tracers of the functional sites and/or complexes formed on humic molecules. In the present study, we test the potential of REEs to be used as tracers of the sources of humic substances (HSs). Three types of organic matter (OM) of terrestrial and microbiological origin were tested. The experiments of REEs binding to the HSs were combined with size-fractionation experiments. The REE patterns were the most fractionated in the <10kDa fraction. For Leonardite humic acid (LHA) and Aldrich humic acid (AHA), the REE patterns were consistent with the REEs binding to strong but low density sites for a low REE/C loading. By contrast, for Pony Lake fulvic acid (PLFA), the REE pattern was similar to the REE pattern developed onto a bacteria cell surface and was attributed to the REEs binding to phosphate surface sites. Fluorescence and elemental analysis of PLFA showed that the <10kDa fraction was the fraction with the stronger microbiological character, which suggested the REEs were probably bound to PLFA through REE-phosphate complexes. Such results therefore provide a new possibility for the use of REEs to assess an OM source without the need to perform numerous or complex analytical methodologies.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3