Controlling mechanisms of sediment-driven dissolved oxygen dynamics in New Bedford Outer Harbour

Author:

Kolb BH,Heineman MC

Abstract

A summer-long monitoring programme investigated mechanisms controlling near-bottom dissolved oxygen (DO) concentrations in New Bedford Outer Harbor, a shallow embayment on the southern Massachusetts coast that receives discharge from a 1.3 m3 s-1 municipal sewage outfall. Continuously recording meters and hydrographic cruises measured DO, temperature, salinity, meteorology, waves and/or currents. The programme quantified the magnitude, spatial extent and duration of oxygen undersaturation in the bottom waters. Summer stratification of New Bedford Outer Harbor reduced reaeration of the bottom waters. Depletion of near-bottom DO was strongly correlated with the presence and duration (though not intensity) of stratification. Stratification is typically thermal, a result of seasonal warming of the water surface, although it can become enhanced (and somewhat salinity driven) owing to the influx of cold saline bottom water following major storm events. Destratification is caused by high wind speed or a drop in 24-h average air temperatures below the water temperature. The decrease in DO concentrations when the water column is stratified is directly related to local sediment oxygen demand. In general, DO dynamics were found to be local and fundamentally one dimensional.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3