Theory of injection photovoltages in organic insulators

Author:

Bonham JS

Abstract

Development of an open-circuit photovoltage, U, in an organic insulator by photoinjection of charge carriers from the electrodes is treated theoretically. In the single-carrier case (both electrodes injecting the same carrier) it is shown that, in the absence of surface traps, U increases at a rate of 60 mV per decade of light intensity, II, above a threshold value of II. Photoinjection from the back (unilluminated) electrode by incompletely absorbed light causes U to become independent of ll at high light intensity. The same process may also cause U to change sign as the wavelength approaches an absorption minimum of the organic. Traps in the bulk of the insulator do not affect the single-carrier photovoltage, but traps at the surface may complicate the intensity dependence of U if they are involved in the injection mechanism. They may for example cause U to decrease and change sign at high n. Only shallow surface traps are considered. Possible effects of surface states are discussed briefly. The major assumption of this paper--neglect of all but injected charge carriers-breaks down in principle in the two-carrier case. However, if there are no sources of photovaltage in the bulk of the insulator the two-carrier case gives a stronger dependence of U on II, and no saturation or possibility of change of sign with wavelength variation. Predictions of the model are shown to agree with the results for a number of systems reported in the literature.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3