Restore and sequester: estimating biomass in native Australian woodland ecosystems for their carbon-funded restoration

Author:

Jonson J. H.,Freudenberger D.

Abstract

In the south-western region of Australia, allometric relationships between tree dimensional measurements and total tree biomass were developed for estimating carbon sequestered in native eucalypt woodlands. A total of 71 trees representing eight local native species from three genera were destructively sampled. Within this sample set, below ground measurements were included for 51 trees, enabling the development of allometric equations for total biomass applicable to small, medium, and large native trees. A diversity of tree dimensions were recorded and regressed against biomass, including stem diameter at 130 cm (DBH), stem diameter at ground level, stem diameter at 10 cm, stem diameter at 30 cm, total tree height, height of canopy break and mean canopy diameter. DBH was consistently highly correlated with above ground, below ground and total biomass. However, measurements of stem diameters at 0, 10 and 30 cm, and mean canopy diameter often displayed equivalent and at times greater correlation with tree biomass. Multi-species allometric equations were also developed, including ‘Mallee growth form’ and ‘all-eucalypt’ regressions. These equations were then applied to field inventory data collected from three locally dominant woodland types and eucalypt dominated environmental plantings to create robust relationships between biomass and stand basal area. This study contributes the predictive equations required to accurately quantify the carbon sequestered in native woodland ecosystems in the low rainfall region of south-western Australia.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3