Field calibration of a capacitance soil water probe in heterogeneous fields

Author:

Geesing Dieter,Bachmaier Martin,Schmidhalter Urs

Abstract

Soil water research requires methods to perform accurate measurements. A capacitance probe gauge has characteristics that seem to make it an attractive replacement for neutron scatter gauges to measure soil water content, but there is evidence that capacitance systems should be calibrated for individual soils. Laboratory calibrations and many field calibration methods are costly and time-consuming, and controlled conditions and disturbed soil samples do not always reflect field conditions, and thus, they are inadequate for practical use. The objectives of the present study were (i) to test a simple field calibration method for a recently developed capacitive sensor even under highly variable soil texture conditions, and (ii) to validate this approach under various soil moisture conditions. Soil samples were taken 0.5 m from the access tube of the sensor and a whole field calibration and several site-specific calibrations were developed using 10–142 observations per site under different soil water regimes. A regression of soil water content estimated by sensor reading on water content obtained by core sampling showed no significant difference in the slope and intercept of the 1:1 line when the field calibration was applied. However, the precision of the calibration was only considerably increased if the estimations were based on site-specific calibrations developed on at least 35 observations per site. The precision and accuracy of the calibration equations were not affected when data were obtained only under wet or dry soil conditions. The method presented in this paper is a speedy and cheap way to calibrate capacitance probe sensors.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3