Influence of long-term irrigation on the distribution and availability of soil phosphorus under permanent pasture

Author:

Condron L. M.,Sinaj S.,McDowell R. W.,Dudler-Guela J.,Scott J. T.,Metherell A. K.

Abstract

This study examined the influence of irrigation on soil phosphorus (P) distribution and availability under permanent pasture in New Zealand. Soil samples (0–0.075, 0.075–0.15, 0.15–0.25 m) were taken from a long-term field experiment, which included a dryland and 2 irrigation treatments (irrigated at 10% and 20% soil moisture) that had received 25 kg P/ha annually as superphosphate for 52 years. Corresponding data for soil from an adjacent ‘wilderness’ site that had not been used for agriculture for 54 years were included for comparison. Analyses included total P, organic P, and inorganic P; isotopic exchange kinetics (IEK) was used to determine soil inorganic P pools of differing plant availability. Concentrations of total and inorganic P were greater in soil taken from the dryland treatment than the irrigated treatments at all depths. This was attributed to a combination of decreased pasture growth and P transfer in drainage and off-farm produce. Concentrations of organic P were greater in the irrigated treatments (e.g. 0–0.075 m: 672–709 mg P/kg) than in the dryland treatment (e.g. 0–0.075 m: 574 mg P/kg) as a consequence of increased pasture production and soil biological activity. Inorganic P availability (Cp and E1min) was also greater in the dryland treatment than the irrigated treatments. Furthermore, concentrations of inorganic P in the recalcitrant IEK pool (E>3m = E3m–1y + E>1y) in the 0–0.075 m soil from the dryland treatment (479 mg P/kg) were significantly greater than the 10% irrigated (346 mg P/kg) and 20% irrigated (159 mg P/kg) treatments, which was mainly attributed to physico-chemical reactions that decreased the exchangeability of accumulated inorganic P with time. Despite increased P retention capacity at depth (R/r1, 0.15–0.25 m: dryland 6.6, 10% irrigated 10.2, 20% irrigated 12.8), concentrations of total inorganic P in the 0.15–0.25 m soil layer were lower under irrigation (195–266 mg P/kg) than dryland (354 mg P/kg), which indicated that long-term flood irrigation increased P transfer by leaching. The findings of this study revealed that while irrigation improved the utilisation of applied fertiliser P it also resulted in increased P movement to depth in the soil profile.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3