Floral ontogeny of Hardenbergia violacea (Fabaceae: Faboideae: Phaseoleae) and taxa of tribes Bossiaeeae and Mirbelieae, with emphasis on presence of pseudoraceme inflorescences

Author:

Tucker Shirley C.

Abstract

The floral ontogeny of several Australian papilionoid taxa has been studied in Hardenbergia violacea L. (Phaseoleae); Kennedia rubicunda (Phaseoleae; inflorescences only); Bossiaea cordigera (Bossiaeeae); Gastrolobium truncatum, Mirbelia oxylobioides, and Pultenaea daphnoides (Mirbelieae). Species studied of Hardenbergia, Pultenaea, and Brachysema have pseudoracemose inflorescences comprised of triads of flowers, Kennedia rubicunda has paired flowers that resemble reduced pseudoracemes, while Gastrolobium truncatum and Mirbelia oxylobioides have pseudoracemes comprised of 2–10 flowers per ultimate unit. Pseudoracemes are a significant and overlooked feature in many taxa of tribes Bossiaeeae and Mirbelieae. Hardenbergia violacea has ultimate axillary units of three flowers, each with a subtending bract but no bracteoles. Floral ontogeny in H. violacea and P. daphnoides shows acropetal order among whorls, and unidirectional order starting from the abaxial side in sepal, petal, and stamen whorls, as in most papilionoid flowers. The carpel is initiated concurrently with the first antesepalous stamen primordium. Pultenaea daphnoides and Bossiaea cordigera have unidirectional sepal initiation starting abaxially, but simultaneous petal initiation, an unusual feature among papilionoids. In late stages of H. violacea and B. cordigera, a diadelphous stamen tube or sheath is formed, while in taxa of Mirbelieae the stamens remain free. The flowers in all taxa studied become strongly zygomorphic as evidenced by three petal morphs and upturning of the free portions of style and stamens late in development.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3