The Influence of Proximity of Plantation Edge on Diversity and Abundance of bird species in an exotic pine plantation in north-eastern New South Wales

Author:

Curry GN

Abstract

Data were collected in summer and winter in a 15-year-old plantation of Pinus taeda, at Clouds Creek, north-eastern New South Wales. In summer, diversity and abundance of bird species declined over a distance of 900 m into the plantation. However, in winter this progressive decline in bird densities was limited to within the first 200 m of the plantation periphery. At greater distances into the plantation, the floristic and structural characteristics of the vegetation (including windrows) were of more importance than the proximity of the plantation edge in accounting for variations in the abundance and diversity of birds. Food for insectivorous birds (the dominant feeding guild) is probably restricted in the plantation because few local species of invertebrates are likely to be adapted to living on exotic pines; invertebrate mobility as well as abundance is probably less in winter, so that fewer invertebrates enter the plantation from adjacent native forest. Windrows are an important habitat feature contributing to the diversity and abundance of birds within plantations, probably serving as 'corridors' through the alien habitat of exotic pines, thus enabling birds to range further into plantations. For approximately 40 per cent of the plantation life cycle, the influence of proximity of plantation edge on diversity and abundance of bird species is probably of limited importance, particularly in winter. Reducing plantation size in order to increase the diversity and abundance of bird species is not realistic, because plantations would have to be very small. Instead, emphasis should be placed on increasing the structural and floristic diversity of plantations by creating a broad range of successional stages throughout the plantation complex, by enhancing the habitat value of windrows, and by retaining native vegetation within and near plantations.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3